If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=2Y^2-16Y+20
We move all terms to the left:
-(2Y^2-16Y+20)=0
We get rid of parentheses
-2Y^2+16Y-20=0
a = -2; b = 16; c = -20;
Δ = b2-4ac
Δ = 162-4·(-2)·(-20)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{6}}{2*-2}=\frac{-16-4\sqrt{6}}{-4} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{6}}{2*-2}=\frac{-16+4\sqrt{6}}{-4} $
| 1/2(10x+4)=16x+14 | | 2/395n-1)=-3/59n+2) | | 3=n.4 | | 4=n.4 | | 1/2(10x+4)=1.8x+14+0.2x | | w-3/4=3/5 | | x-2/3=8(1/2) | | 6x-5.9=3x+5.6-1.6 | | 7x-152=2x-12 | | 5/9=x+4 | | u+5/8=-3/4 | | x/6-((x+2)/2)=(x-13)/9 | | -3=v-2/3 | | w+7/8=3/4 | | 93=h+90 | | A(w)=18w-w^2 | | 4=-2/5+y | | 42.3=p+26.3 | | 4y+1/5=5y/3+29/5 | | 8x=-24+-24 | | 95=0.5y+45 | | -56=-24+2y | | 10^2+b^2=17^2 | | D=p+26.3 | | 26=-2c+72 | | 9y+18=5y-6 | | 488x=x | | 2^4-3x=1/32 | | 1-h=-6 | | 3a-8=2(6-1a) | | 7t-9t+13=8 | | 110=(5+x)3x |